TWO HIRSUTINOLIDES AND A GERMACRANOLIDE FROM CHRESTA SPH AERO CEPHALA*

FERDINAND BOHLMANN, † CHRIST: A ZDERO, † ROBERT M. KING‡ and HAROLD ROBINSON‡

†Institute for Organic Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, West Germany; ‡Smithsonian Institution, Washington, DC 20650, U.S.A.

(Received 30 May 1980)

Key Word Index—Chresta sphaeroceph ala; Compositiae; sesquiterpene lactones; hirsutinolides, germacranolides.

So far no representatives of the resurrected genus Chrest a (Compositae, tribe Vernonieae) [1] have been investigated chemically. We therefore have collected material of the lectotype C. sphaerocephala DC. (= C. cordata Vell. = C. intermedia Gardn. = Eremanthus sphaerocephalus (DC.) Baker). The aerial parts afforded germacrene D, bicyclogermacrene, spathulenol, stigmasterol, lupeol, its acetate and the isorneric acetates 1 and 2 [2]. The polar fractions yielded a mixture of minute

amounts of sesquiterpene lactones. The less polar ones obviously are further hirsutinolides, the isomeric tiglates 3 and 4, which could be separated. The ¹H NMR data are very similar to those of the corresponding 1-epimeric 8-O-acetates [2]. The relative position of the tiglate group, however, followed only from the chemical shifts of 13-H, being slightly different from those in the spectrum of the corresponding acetates [2] (Table 1). A clear decision which isomer is which was not possible. On heating with

Table 1. ¹H NMR spectral data of compounds 3-5 and 7 (270 MHz, TMS as internal standard)

• e*		3*	4*	5 (CDC ₁₃)	(C_6D_6)	+ Eu(fod) ₃ , 77°	7 (C ₆ D ₆ , 80°)
I-H		_		4.55 br. d	4.72 br. d	5.09 br. d	-
2-H)			2.60 dd	2.30 dd	2.78 dd \	4.10 br. s
?'-H	}	2	.30 m	2.15 br. d	1.70 br. d	2.31 br. d \int_{C}	2.10 m
-H	}			_		· - {	1.80 m
-H		6.06 s	6.07 s	4,97 br. d	4.35 br. d	4.79 br. d	5.57 s
-H		_	_	5.78 d	5.68 d	6.07 d	_
-H		5.56 dd	5.55 dd	3.10 ddd	2.57 ddd	2.86 ddd	6.44 br. d
'-H			· _	2.29 br. d	2.10 m	2.12 m	_
-H		-		2.47 m	1.91 m	2.22 m	2.33 dd
'-H		2	2.63 m	2.4/ m	1.70 m	2.05 m	1.81 dd
3-H	Ì	4.87 br. s	4.77 br. s	5.02 br. d	6.36 br. d	5.23 br. d	
3'-H	}	~	7.0/1 01.3	4.77 07. 3	4.89 br. d	6.00 br. d	5.05 d
4-H		1.30 br. s	1.35 br. s	1.48 br. s	1.51 br. s	1.72 br. s	1.07 s
5-H		1.57 s	1.54 s	2.02 br. s	1.77 br. s	1.87 br. s	1.33 s
OAc		2.03 s	2.04 s	2.04 s	1.67 s	2.34 s	1.68 s
				2.08 s	1.66 s	1.87 s	_
OTigl		6.94 qq		6.89 qq	6.86 qq	7.07 qq	6.95 qq
			.85 br. d	1.84 br. d	1.40 dq	1.54 dq	1.41 dq
		1	.83 br. s	1.82 brs	1.70 dq	1.92 dq	1.70 dq
Мe		3.28 s	3.27 s	- -	_		_

^{*} May be interchangeable.

J(Hz): Compounds 3/4: 8, 9 = 8, 9' = 3.5; 3', 4' = 7; compound 5: 1, 2 = 7; 1, $14 \sim 1$; 2, 2' = 16; 5, 6 = 10; 8, 8' = 15; 8, 9 = 11; 8, 9' = 5; 13, 13' = 12; 3', 4' = 7; 3', 5' = 4', $5' \sim 1$; compound 7: 8, 9 = 8.5; 8, 9' = 1.5; 9, 9' = 15.5; 13, 13' = 12.5.

^{*}Part 310 in the series 'Naturally Occurring 'Terpene Derivatives'. For Part 309 see: Mahmoud, Z. F., Abdel Salam, N. A., Sarg, T. M. and Bohlmann, F. (1981) *Phytochemistry* 20 (in press).

1ß OMe

acetic anhydride both isomers afforded by elimination of methanol the lactone 7, indicating that 3 and 4 differed only in the stereochemistry at C-1. The ¹H NMR signals of 7 (Table 1) were very broad at room temperature, but sharpened at 80° in benzene. As could be deduced from the ¹H NMR spectra and from models the conformations of 3/4 and 7 were different. The observed downfield shift of the 8-H signal in the spectrum of 7 could be explained only if this proton is deshielded by the 10-hydroxy group, which supported the 10α-orientation.

A further lactone most probably is 5. The ¹H NMR data (Table 1) indicated the presence of an isomerized lactone, while spin decoupling clearly showed that a second oxygen function had to be placed at C-1, as irradiation at the 14-H signal caused a sharpening of the broadened doublet at $\delta = 4.55$ (W-coupling), which was further coupled with signals at 2.60 (dd) and 2.15 (br. d). The trans-configuration of the 5,6-double bond followed from the coupling $J_{5,6} = 10 \,\text{Hz}$, which in heliangolides is always very small. The other signals could be assigned by further decoupling experiments and from Eu(fod)₃ induced shifts, which clearly showed that one of the acetate groups was placed at C-13 (largest shifts of the 13-H and of one acetate methyl signals). The second one most probably was at C-3, though a C-1 position could not be excluded, as partial saponification was unsuccessful. Structure 5 therefore is not absolutely established, but is the more likely one since similar compounds have acetate groups at C-3 and no other ester groups [3]. We have named 5 chrestanolide.

EXPERIMENTAL

The air dried aerial parts (600 g) (voucher RMK 8251) were extracted with Et₂O-petrol and the resulting extract after treatment with MeOH (to remove long chain saturated hydrocarbons) was first separated by column chromatography and further by repeated TLC (SiO₂, GF 254). With petrol, 10 mg germacrene D and 80 mg bicyclogermacrene were obtained.

Fractions with $\rm Et_2O$ -petrol, 1:10 afforded 200 mg lupeol acetate, 100 mg 1 and 100 mg 2; those with $\rm Et_2O$ -petrol, 1:1 50 mg spathulenol, 100 mg lupeol and 10 mg stigmasterol; while the fractions obtained with $\rm Et_2O$ finally gave 8 mg 3 and 4 (ca. 3:2) and 6 mg 5 (purified by HPLC, reversed phase, MeOH-H₂O, 7:3).

10β-Hydroxy-8β-tiglinoyloxy-1α respectively 1β-O-methylhirsutinolide-13-O-acetate (3 and 4). Colourless gum, IR $v_{\rm max}^{\rm CC1}$ cm $^{-1}$: 3610 (OH), 1780 (lactone), 1745, 1235 (OAc), 1710, 1640 (C=CCO₂R); UV ($\lambda_{\rm max}$ Et₂O): 280 nm; MS m/e (rel. int.): 450.189 (M $^+$, 0.2) (C₂₃H₃₀O₉), 350 (M $^-$ RCO₂H, 2), 83 (C₄H₇CO $^+$, 100). 5 mg 3 and 4 were heated with 0.1 ml Ac₂O 1 hr at 70°. TLC (Et₂O-petrol, 1:1) afforded 3 mg 7, colourless gum, IR $v_{\rm max}^{\rm CC1}$ cm $^{-1}$: 3550 (OH), 1780 (lactone), 1750, 1235 (OAc), 1720 (C=CCO₂R), 1650 (C=COR); MS m/e (rel. int.): 418 (M $^+$, 0.5), 319 (M $^-$ OTigl, 2), 275 (315 $^-$ CO₂, 6), 234 (18), 216 (234 $^-$ H₂O, 9), 83 (C₄H₇CO $^+$, 100).

Chrestanolide (5). Colourless gum, IR $v_{\text{max}}^{\text{CCl}_{2}}$ cm⁻¹: 1770 (lactone), 1745, 1240 (OAc), 1720, 1646 (C=CO₂R); MS m/e (rel. int.): 462.189 (M⁺, 2) (C₂₄H₃₀O₉), 420 (M - ketene, 1, 392 (420 - CO, 1), 362 (M - RCO₂H, 1), 332 (392 - AcOH, 3), 302 (362 - AcOH, 5), 232 (332 - RCO₂H, 13), 83 (C₄H₇CO⁺, 100).

$$[\alpha]_{24}^{\lambda} = \frac{589 \quad 578}{-2.4 \quad -2.7} \quad \frac{546}{-2.7} \quad \frac{436}{+1.2} \quad \frac{365 \text{ nm}}{+22.0}$$

$$(c = 0.5, \text{CHCl}_3).$$

Acknowledgements—We thank Drs. Scott A. Mori and P. Alvim, Centro de Pesquisas at Itabanu, Bahia, Brazil, for their help during plant collection and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Robinson, H. (1980) Phytologia 45, 89.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1979) Phytochemistry 18, 987.
- Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) Prog. Chem. Nat. Org. Prod. 38, 47.